Systematic Errors and Location Accuracy in Wireless Networks

نویسندگان

  • Harri Saarnisaari
  • Timo Bräysy
چکیده

Wireless systems already provide time delay and signal strength measurements and the future may see antenna arrays that provide directional information. All these may be used for positioning. Although the statistical accuracy of different positioning methods is well studied, the systematic error effects, which arise, for example, from errors in sensor (node) location, network synchronization, or the path loss model, are not. This study fills this gap providing a unified error-propagation-law-based tool to analyze measurement and systematic error effects. The considered positioning systems, which are compared based on the developed framework, are the hyperbolic (time-delay-based), direction finding (DF), received signal strength (RSS), and relative RSS (RRSS) location systems. The obtained analytical results verify our intuitive expectations; the hyperbolic methods are sensitive to errors in network synchronization, RRRS methods to channel modelling errors, whereas DF methods are rather insensitive to systematic errors. However, the bias of DF methods is at its largest if the sensor location error is perpendicular to the line joining the sensor and the source. If the methods are compared based on overall accuracy, hyperbolic methods may be preferred in large sized networks, whereas the DF and RRSS methods may provide better accuracy in small sized networks. However, RRSS systems require a dense network in order to provide reliable results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improve range-free localization accuracy in wireless sensor network using DV-hop and zoning

In recent years, wireless sensor networks have drawn great attention. This type of network is composed of a large number of sensor nodes which are able to sense, process and communicate. Besides, they are used in various fields such as emergency relief in disasters, monitoring the environment, military affairs and etc. Sensor nodes collect environmental data by using their sensors and send them...

متن کامل

Optimizing the Event-based Method of Localization in Wireless Sensor Networks

A Wireless Sensor Network (WSN) is a wireless decentralized structure network consists of many nodes. Nodes can be fixed or mobile. WSN applications typically observe some physical phenomenon through sampling of the environment so determine the location of events is an important issue in WSN. Wireless Localization used to determine the position of nodes. The precise localization in WSNs is a co...

متن کامل

A multi-hop PSO based localization algorithm for wireless sensor networks

A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...

متن کامل

LPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring

Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...

متن کامل

Multiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization

A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006